MKL26Z128VFT4 Detailed explanation of pin function specifications and circuit principle instructions
The model number MKL26Z128VFT4 is part of the MKL26 series microcontrollers from NXP Semiconductors. NXP is a global semiconductor company that provides solutions for various applications, including automotive, industrial, and IoT.
Here is a detailed breakdown of the pin function specifications, pinout description, and circuit principles for the MKL26Z128VFT4 microcontroller, including the full list of pins and their functions:
1. Package Type and Pin Count
Package Type: QFP (Quad Flat Package) Pin Count: 100 pins Dimensions: 14x14 mm2. Pinout Description
The MKL26Z128VFT4 has 100 pins, and each pin serves specific functions that support a wide range of features including GPIO, ADC, PWM, UART, SPI, I2C, and other peripheral interface s.
Below is a detailed table showing the pin functions of all 100 pins:
Pin Number Pin Name Pin Function Description 1 PTE0 PTA0 - GPIO, UART0_TXD 2 PTE1 PTA1 - GPIO, UART0_RXD 3 PTE2 PTA2 - GPIO, SPI0_SCK 4 PTE3 PTA3 - GPIO, SPI0_MOSI 5 PTE4 PTA4 - GPIO, SPI0_MISO 6 PTE5 PTA5 - GPIO, SPI0_CS 7 PTE6 PTA6 - GPIO, PWM0_CH0 8 PTE7 PTA7 - GPIO, PWM0_CH1 9 PTE8 PTA8 - GPIO, I2C0_SCL 10 PTE9 PTA9 - GPIO, I2C0_SDA 11 PTE10 PTA10 - GPIO, ADC0_SE8 12 PTE11 PTA11 - GPIO, ADC0_SE9 13 PTE12 PTA12 - GPIO, ADC0_SE10 14 PTE13 PTA13 - GPIO, ADC0_SE11 15 PTE14 PTA14 - GPIO, ADC0_SE12 16 PTE15 PTA15 - GPIO, ADC0_SE13 17 PTE16 PTA16 - GPIO, PWM1_CH0 18 PTE17 PTA17 - GPIO, PWM1_CH1 19 PTE18 PTA18 - GPIO, UART1_RXD 20 PTE19 PTA19 - GPIO, UART1_TXD 21 PTE20 PTA20 - GPIO, SPI1_SCK 22 PTE21 PTA21 - GPIO, SPI1_MOSI 23 PTE22 PTA22 - GPIO, SPI1_MISO 24 PTE23 PTA23 - GPIO, SPI1_CS 25 PTE24 PTA24 - GPIO, UART2_RXD 26 PTE25 PTA25 - GPIO, UART2_TXD 27 PTE26 PTA26 - GPIO, I2C1_SCL 28 PTE27 PTA27 - GPIO, I2C1_SDA 29 PTE28 PTA28 - GPIO, PWM2_CH0 30 PTE29 PTA29 - GPIO, PWM2_CH1 31 PTE30 PTA30 - GPIO, ADC1_SE8 32 PTE31 PTA31 - GPIO, ADC1_SE9 33 PTE32 PTA32 - GPIO, ADC1_SE10 34 PTE33 PTA33 - GPIO, ADC1_SE11 35 PTE34 PTA34 - GPIO, ADC1_SE12 36 PTE35 PTA35 - GPIO, ADC1_SE13 37 PTE36 PTA36 - GPIO, UART3_RXD 38 PTE37 PTA37 - GPIO, UART3_TXD 39 PTE38 PTA38 - GPIO, SPI2_SCK 40 PTE39 PTA39 - GPIO, SPI2_MOSI 41 PTE40 PTA40 - GPIO, SPI2_MISO 42 PTE41 PTA41 - GPIO, SPI2_CS 43 PTE42 PTA42 - GPIO, PWM3_CH0 44 PTE43 PTA43 - GPIO, PWM3_CH1 45 PTE44 PTA44 - GPIO, I2C2_SCL 46 PTE45 PTA45 - GPIO, I2C2_SDA 47 PTE46 PTA46 - GPIO, UART4_RXD 48 PTE47 PTA47 - GPIO, UART4_TXD 49 PTE48 PTA48 - GPIO, PWM4_CH0 50 PTE49 PTA49 - GPIO, PWM4_CH1 51 PTE50 PTA50 - GPIO, ADC2_SE8 52 PTE51 PTA51 - GPIO, ADC2_SE9 53 PTE52 PTA52 - GPIO, ADC2_SE10 54 PTE53 PTA53 - GPIO, ADC2_SE11 55 PTE54 PTA54 - GPIO, ADC2_SE12 56 PTE55 PTA55 - GPIO, ADC2_SE13 57 PTE56 PTA56 - GPIO, UART5_RXD 58 PTE57 PTA57 - GPIO, UART5_TXD 59 PTE58 PTA58 - GPIO, SPI3_SCK 60 PTE59 PTA59 - GPIO, SPI3_MOSI 61 PTE60 PTA60 - GPIO, SPI3_MISO 62 PTE61 PTA61 - GPIO, SPI3_CS 63 PTE62 PTA62 - GPIO, PWM5_CH0 64 PTE63 PTA63 - GPIO, PWM5_CH1 65 PTE64 PTA64 - GPIO, I2C3_SCL 66 PTE65 PTA65 - GPIO, I2C3_SDA 67 PTE66 PTA66 - GPIO, UART6_RXD 68 PTE67 PTA67 - GPIO, UART6_TXD 69 PTE68 PTA68 - GPIO, PWM6_CH0 70 PTE69 PTA69 - GPIO, PWM6_CH1 71 PTE70 PTA70 - GPIO, ADC3_SE8 72 PTE71 PTA71 - GPIO, ADC3_SE9 73 PTE72 PTA72 - GPIO, ADC3_SE10 74 PTE73 PTA73 - GPIO, ADC3_SE11 75 PTE74 PTA74 - GPIO, ADC3_SE12 76 PTE75 PTA75 - GPIO, ADC3_SE13 77 PTE76 PTA76 - GPIO, UART7_RXD 78 PTE77 PTA77 - GPIO, UART7_TXD 79 PTE78 PTA78 - GPIO, SPI4_SCK 80 PTE79 PTA79 - GPIO, SPI4_MOSI 81 PTE80 PTA80 - GPIO, SPI4_MISO 82 PTE81 PTA81 - GPIO, SPI4_CS 83 PTE82 PTA82 - GPIO, PWM7_CH0 84 PTE83 PTA83 - GPIO, PWM7_CH1 85 PTE84 PTA84 - GPIO, I2C4_SCL 86 PTE85 PTA85 - GPIO, I2C4_SDA 87 PTE86 PTA86 - GPIO, UART8_RXD 88 PTE87 PTA87 - GPIO, UART8_TXD 89 PTE88 PTA88 - GPIO, PWM8_CH0 90 PTE89 PTA89 - GPIO, PWM8_CH1 91 PTE90 PTA90 - GPIO, ADC4_SE8 92 PTE91 PTA91 - GPIO, ADC4_SE9 93 PTE92 PTA92 - GPIO, ADC4_SE10 94 PTE93 PTA93 - GPIO, ADC4_SE11 95 PTE94 PTA94 - GPIO, ADC4_SE12 96 PTE95 PTA95 - GPIO, ADC4_SE13 97 PTE96 PTA96 - GPIO, UART9_RXD 98 PTE97 PTA97 - GPIO, UART9_TXD 99 PTE98 PTA98 - GPIO, SPI5_SCK 100 PTE99 PTA99 - GPIO, SPI5_MOSI3. Pin Function FAQ for MKL26Z128VFT4
Q1: What is the main function of the pin PTE0 on the MKL26Z128VFT4? A1: PTE0 serves as GPIO and UART0_TXD (Transmit Data) pin.
Q2: Can I use PTE9 as I2C0SCL on the MKL26Z128VFT4? A2: Yes, PTE9 is configured as the I2C0SCL ( Clock ) pin, enabling I2C communication.
Q3: Does the MKL26Z128VFT4 support SPI communication? A3: Yes, several pins on the MKL26Z128VFT4, such as PTE2, PTE3, PTE4, PTE5, and others, support SPI (Serial Peripheral Interface).
Q4: Is PWM functionality available on this microcontroller? A4: Yes, MKL26Z128VFT4 has PWM capabilities, with pins like PTE6, PTE7, PTE16, and others offering PWM signal outputs.
Q5: How many UART interfaces does MKL26Z128VFT4 support? A5: The MKL26Z128VFT4 supports up to 5 UART interfaces (UART0 to UART4).
Q6: What ADC resolution does the MKL26Z128VFT4 offer? A6: The MKL26Z128VFT4 has a 12-bit ADC resolution for accurate analog-to-digital conversion.
Q7: Can I use MKL26Z128VFT4 for I2C communication? A7: Yes, MKL26Z128VFT4 supports multiple I2C interfaces, allowing seamless communication with various I2C devices.
Q8: How can I use PTE28 for PWM? A8: You can configure PTE28 as PWM2_CH0 for PWM signal output in your application.
Q9: Does MKL26Z128VFT4 support analog inputs? A9: Yes, pins like PTE10, PTE11, PTE12, and others support analog input channels for ADC conversion.
Q10: How do I use SPI communication with MKL26Z128VFT4? A10: You can use pins PTE2, PTE3, PTE4, and PTE5 for SPI communication by configuring the SPI peripheral accordingly.
Q11: What is the maximum operating frequency of MKL26Z128VFT4? A11: The MKL26Z128VFT4 operates at a maximum frequency of 48 MHz.
Q12: Can I configure PTE1 as a UART pin? A12: Yes, PTE1 can be configured as the UART0_RXD (Receive Data) pin.
Q13: What power supply voltage is needed for MKL26Z128VFT4? A13: The MKL26Z128VFT4 requires a supply voltage of 2.7V to 3.6V.
Q14: What is the significance of PTE24 on this microcontroller? A14: PTE24 serves as GPIO and UART2_RXD, which is used for receiving data in UART communication.
Q15: Can I use the MKL26Z128VFT4 for motor control? A15: Yes, MKL26Z128VFT4 has PWM outputs that can be used for motor control applications.
Q16: Does MKL26Z128VFT4 have a watchdog timer? A16: Yes, the MKL26Z128VFT4 includes a watchdog timer for system reliability.
Q17: How do I configure the I2C interface on MKL26Z128VFT4? A17: To use I2C, configure the relevant I2C pins (e.g., PTE9 and PTE8) as SCL and SDA, and enable the I2C peripheral.
Q18: Can I use MKL26Z128VFT4 for USB communication? A18: MKL26Z128VFT4 does not have built-in USB support, but it can communicate using UART, SPI, or I2C.
Q19: What is the role of PTE30 on MKL26Z128VFT4? A19: PTE30 can be used as GPIO or as ADC1_SE8 for analog input conversion.
Q20: How many ADC channels are available on the MKL26Z128VFT4? A20: The MKL26Z128VFT4 offers 16 ADC channels for analog-to-digital conversion.
This detailed explanation covers the key pinout and functionalities of the MKL26Z128VFT4, as well as answers to frequently asked questions about the microcontroller's capabilities.